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Abstract— The car following behavior has recently gained
much attention due to its wide variety of applications. This
includes accident analysis, driver assessment, support systems,
and road design. In this paper, we present a model that
leverages Markov regime switching models to classify various
car following regimes. The detected car following regimes
are then mined to calibrate the parameters of drivers to
be dependent on the driver’s current driving regime. A two
stage Markov regime switching model is utilized to detect
different car following regimes. The first stage discriminates
normal car following regimes from abnormal ones, while the
second stage classifies normal car following regimes to their
fine-grained regimes like braking, accelerating, standing, free-
flowing, and normal following. A genetic algorithm is then
employed to the observed driver data in each car following
regime to optimize car following model parameter values of the
driver in each regime. Experimental evaluation of the proposed
model using a real dataset shows that it can detect up-normal
(rare and short time) events. In addition, it can infer the
switching process dynamics such as the expected duration, the
probability of moving from one regime to another and the
switching parameters of each regime. Finally, the model is able
to accurately calibrate the parameters of drivers according to
their driving regimes, so we can achieve a better understanding
of drivers behavior and better simulation of driving situation.

Index Terms car following model; regime classification;
model calibration; driver behavior; Markov switching model.

I. INTRODUCTION

Driving behavior models are based on time series data
analysis. Leading models in this field use Hidden Markov
Models (HMM) and its extensions such as in [2] which
use driving signals to build hierarchical framework to model
driver behavior. Auto Regressive Hidden Markov Model
(ARHMM) is also used as in [3] which proposes a method
of modeling driving behavior concerned with certain period
of past movements.

The objective behind this study is to show the ability
of Markov switching models to classify driver behavior
based on changes of driving situations, and calibrating car
following models based on this classification.

II. CAR FOLLOWING BEHAVIOR

A driver is assumed to be in car following situation when
s/he is constrained by a leading vehicle at the same lane
1. The driver starts to avoid collision with the leader by

1 ahmed.zaky@ejust.edu.eg
2 walid.gomaa@ejust.edu.eg
3 mohamed.khamis@ejust.edu.eg

Fig. 1: Car following situation.

respecting the distance and the velocity difference between
the two vehicles. Since Pipes model [4], numerous models
were presented to simulate car following behavior. Models
like Intelligent Driver Model (IDM) [5], velocity difference
[6], and Gipps [7] use observed driving parameters such as:

a : Acceleration of vehicle (m=s2),
x : Position of vehicle (m),
v : Speed of vehicle (m=s),
�x : Space headway (m), and

�v : Speed difference (m=s2)

There are parameters that cannot be observed and can be
used to determine the driving situations and mainly depend
on the driver’s behavior; such as the parameters introduced
in the IDM model Eq. (1) where: driver desired speed v0,
maximum acceleration rate a, maximum deceleration rate b,
minimal space gap s0 and desired time headway T . This
parameters can be used in describing driving situation but it
must be calibrated for each driver.

v_(s; v;�v) = a[1� (
v

v0
)4 � (

s�(v;�v)

s
)2] (1)

Where s�(v;�v) = s0 + vT +
v�v

2
p
ab

There are mainly five driving patterns that can be assumed
in car following behavior depending on driving situation as
follows:
� Acceleration: This situation starts by a case that the

leader and follower are not moving, then the leader
starts to move and the follower starts to accelerate
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in order to reach the leader until a normal following
situation occurs.

� Approaching: The follower speed is greater than the
leader speed and the in-between distance is getting
closer. The approaching regime starts when the follower
gets closer to the leader, and ends with a stable follow-
ing (while the follower tries to keep a safe distance in
order not to collide with the leader).

� Braking: The follower becomes too close to the leader
and starts braking.

� Stable following: The follower tries to keep a safe
distance with the leader by accelerating and decelerating
actions according to the position and velocity difference.

� Free flowing: The follower has no constrains and moves
freely towards his/her desired speed.

III. RELATED WORK

Model calibration is based on two approaches; (1) local
approach where the model variables are evaluated point-by-
point with the observed data using a maximum-likelihood
technique [9], (2) global approach that uses the complete data
trajectory compared with a simulated trajectory and define
an objective function to minimize the relative error [10].

Machine learning approaches have been introduced for
modeling and classifying following behavior. Supervised
models such as fuzzy inference presented in [11] use multi-
dimensional time series data and employing neural fuzzy
framework to find the mean and the standard deviation of
each cluster center which represents a driving regime. A
neural network approach introduced in [12] uses various net-
work types such as back-propagation, fuzzy logic, and radial
basis function networks. Neural models use real driving data
after being classified into regimes by headway distance and
velocity. Unsupervised clustering algorithms were also used,
e.g., fuzzy clustering algorithm with time continuity [13].

IV. BACKGROUND

A. Regime switching models

The objective of regime switching models is to capture
changes in time series data, e.g., driving data. Driving
behavior changes over time in the driving environment. The
driving signals and their characteristics are related to specific
events. Each driving regime has different characteristics and
a mathematical model that can trace these characteristics;
this can be implemented using Markov regime switching
regressive process, e.g., the auto regressive model proposed
by [14]. Regression models are standard and effective tools
for detecting the relationship between exploration variables
and response variables. For instance, the Gaussian auto re-
gression AR(1) model presented in Eq. (2) with change point
detection algorithms can be used for time series analysis.
Sophisticated regime switching models can represent all the
possible system regimes or states and the whole system
dynamics; e.g., Eq. (3) where St+1 is a stochastic variable
representing the system state that is changing over time (the
regime switching models study the dynamics of that change).

Xt+1 = c+ �Xt + �t+1 �t+1 � N(0; �2) (2)

Xt+1 = cSt+1
+�St+1

Xt+�t+1 �t+1 � N(0; �2
St+1

) (3)

Many threshold models are introduced in [15]; a simple
threshold model assumes St+1 where k � 1 for xt threshold
used for switching as threshold parameters x1; x2; :::xk:

ifxt � x1 Xt+1 = c1+�1Xt+�t+1 j �t+1 � N(0; �2
1)

ifx1 < xt � x2 Xt+1 = c2+�2Xt+�t+1 j �t+1 � N(0; �2
2)

ifx2 < xt � x3 Xt+1 = c3+�3Xt+�t+1 j �t+1 � N(0; �2
3)

:::

B. Markov regime switching

Markov Regime Switching (MRS) models are the most
general and widely used for behavior analysis. MRS models
are generalization of HMM [17], and can be used in model-
ing the stochastic behavior of a time series into two or more
states or regimes. MRS uses stochastic models to represent
each regime and a Markov process for the switching between
regimes. Observed variables are used for modeling each
regime and unobserved (hidden) variables are used for the
Markov switching process.

1) Modeling: Time series data behavior can be repre-
sented by a group of first order regression models as in
Eq. (3). The state variable st is evolved over time as
a discrete time, discrete space Markov process, assuming
st = 1; 2; : : : k for k regimes. The stochastic transition of
states is determined by a Markov transition matrix p which
determines the dynamics of switching process where pi;j =
Pr(st = ijst�1 = j) is the probability of switching from
state j to state i.

p =

0BBB@
p1;1 p1;2 � � � p1;k

p2;1 p2;2 � � � p2;k

...
...

. . .
...

pk;1 pk;2 � � � pk;k

1CCCA
st cannot be observed directly but can be inferred using
the observed values X . To fully describe the system, the
system parameters must inferred: the Gaussian variance
�1; �2; : : : �k, the regression coefficient �1; �2; : : : �k, inter-
cepts c1; c2 : : : ck, and the state transition probabilities Pi;j .

2) Parameter estimation: MRS model parameters can be
estimated by different methods, such as Markov chain Monte
Carlo methods as Gipps sampling used in [18]. In our model,
we use maximum likelihood estimate method introduced in
[19] where in MRS the states are unknown and the log-
likelihood function is given by:

lnL =

TX
t=1

ln

KX
j=1

P (xtjst = j; �):P (st = j) (4)



where P (xtjst = j; �) is the conditional probability den-
sity of a time series conditioned on model parameters and
current regime. The conditional probability can follow any
probability distribution and �t; �t are the conditional mean
and variance, respectively.

3) Filtered probability estimates: Another important issue
in MRS models is the estimation of �jt which represents the
probability of the unobserved state vector St. The probability
of being under regime j at time t given the model parameters
is given by Eq. (5):

�jt = P (st = jj
t; �) (5)

where 
t is the sequence of observations over time given
by:


t = fxt; xt�1; :::x2; x1g

and � is the population parameter vector which is given by:

� = f�1; �2; :::�k; c1; c2:::ck; �1; �2; :::�k; pi;jg

with the restrictions �jt > 0 and
P
8j

�jt = 1.

The Hamilton filter can be used to calculate the filtered
probabilities using the maximum likelihood estimate. The
computation of the filtered state probability, �jt requires a
recursive procedure which is given in the following steps:

Hamilton Filter:
1) Set the initial probabilities for (t = 0) of P (st = j)

for j = 1; 2; : : : k.
2) Predict regime probabilities using:

P (st =jj
t�1; �)

=

kX
i=0

P (st = jjst�1 = i)P (st�1 = ij
t�1; �)

3) Calculate the conditional probability density based on
regime:

P (xtjst = j;
t�1)

4) Calculate the unconditional:

P (xtj
t�1; �)

=

kX
j=1

P (xt; st = jj
t�1; �)

=

kX
j=1

P (xtjst = j;
t�1; �):P (st = jj
t�1; �)

5) Calculate the filtered probability by finding the proba-
bility of each state using the new observation at time
t and the model parameters for each state:

P (st =jj
t; �)

=
f(xtjst = j;
t�1):P (st = jj
t�1; �)

kP
j=1

f(xtjst = j;
t�1):P (st = jj
t�1; �)

A recursive process is performed at each time step using
steps 3, 4 and 5 until all observations are used. The filtered
probabilities are generated for each state over time.

V. EXPERIMENT

In this section, we introduce switching models used
in modeling car following behavior regimes classification.
Two switching models are used and implemented using the
fMarkovSwitching R package [20]. Before presenting the
models, we briefly introduce the real floating dataset used.

A. Car following dataset

The Robert Bosch GmbH Research Group [21] dataset
is used in modeling and validating our model. The dataset
represents the collected data for speed under stop-and-go
traffic conditions during an afternoon peak on a single lane in
Stuttgart, Germany. A car with a frontal radar sensor is used
to measure relative speed and distance between leader and
follower. The three used datasets are sampled at 100 ms with
duration 250, 400 and 300 seconds. Results are presented for
the first dataset only. These datasets were used in modeling,
evaluating, and calibrating car following models such as [12]
and [22].

B. Model implementation

In this work, we consider two switching models with
explanatory variables which are used as features in regime
classification. A general form of Markov switching model
using explanatory time series variables can be represented as
in Eq. (6), where acceleration, headway distance and velocity
difference between leader and follower are the three used
exploration variables in first model. In the second model,
we use safety parameters such as Time To Collision (TTC)
and time headway. Tracking change points in the explanatory
variables yields a detection of the change in the driver
behavior and may be switching to another driving regime.

Xt =

NnsX
i=1

�ix
ns
i;t +

NsX
j=1

�j;st
xs

j;t + �t (6)

Where:

St = 1::k : the state at time t

�t = N(0; �2
st

)

Ns : Number of switching variables
Nns : Number of non-switching variables
xj;t : Switching explanatory variable at t
xi;t : Non-switching explanatory variable at t
�i : Regression coefficient of non-switching variable i
�j;st

: Regression coefficient of switching variable j for state s

First switching model is presented in Eq. (7); follower ve-
locity v, acceleration a, velocity difference dv, and headway
distance h:

vt+1 = �1;st
at + �2;st

dvt + �3;st
hj;t + �t (7)



Second switching model is presented in Eq. (8); time to
collision TTC and headway time TH:

vt+1 = �1;stTTCt + �2;stTHj;t + �t (8)

The floating car following dataset is used for MRS mod-
eling where the number of driving regimes is set to k = 5
for the first stage and k = 3 for the second stage. In the
first stage, all dataset observations are used for classification.
Then, the car following regimes classified from the first
stage are separated and used as input for the second stage
which classifies the normal car following regimes. The model
parameters �sk

; �1; �2, and �3 are presented in Table I for
each regime estimated using a log-likelihood approach. Other
estimated parameters are the Markov transition matrix p
between regimes which represents the probability of moving
from regime j to regime i; P (st = ijst�1 = j):

p =

0BBBB@
0:87 0:00 0:06 0:07 0:00
0:00 0:83 0:10 0:07 0:00
0:01 0:33 0:66 0:01 0:00
0:00 0:00 0:00 0:98 0:02
0:00 0:00 0:00 0:16 0:84

1CCCCA
Table II presents the observed information of the driving

regime. The used dataset contains 2529 observations. We
can observe the expected duration of driving in each regime
which means that the driver will stay for a time around the
expected duration time driving in that regime. Other charac-
teristics of regimes are shown, e.g., number of occurrences,
number of observations that belongs to each regime, and the
percentage of driving under each regime.

In order to understand the driving situations and driver
behavior of each regime, we analyze the time-series data
and regime switching output presented in [23]. The dataset
used has no free-flowing driving situation, and as shown in
Table II: 94% of the time, the driver switches between the
normal driving behaviors in regime 2 and 4. A sample of
switching between the 2 regimes are presented in Fig. 2
where the filtered probability of each regime (that determines
the wining regime) is presented. Rare events as regime 1 that
occurred only once and short time events are represented by
regimes 3 and 5 that have small expected duration 2.91 and
1.02 ms respectively as shown in Table II. Second stage
takes into consideration regimes 2 and 4 from first stage and
starts to classify the normal car following behavior.

First Model
Parameter Regime 1 Regime 2 Regime 3 Regime 4 Regime 5
�sk 2.2283 1.36 2.6774 2.6924 2.6422
�1 1.3251 0.6825 0.5268 0.3867 0.3305
�2 -0.3461 -0.2714 -0.1407 -0.1049 -0.0873
�3 -0.7643 -0.3932 -0.2494 -0.1870 -0.1501

Second Model
Parameter Braking Standing Acceleration Approaching
�sk 1.4364 0.0045 0.2308 0.8168
�1 0.0180 -0.0001 0.0101 -0.0028
�2 0.0069 0 1.1504 1.8203

TABLE I: Estimates of car following Markov regime switch-
ing model parameters.

Regime Characteristics

State Expected
duration (ms) Occurrence Observations Percentage

Regime 1 7.45 1 63 2.49%
Regime 2 5.91 20 1690 66.8%
Regime 3 2.91 13 65 2.57%
Regime 4 6.14 12 677 26.76%
Regime 5 1.02 10 34 1.34%

TABLE II: Driving regimes contained in dataset.

Fig. 2: a) Driver behavior switching between different
regimes, b) filtered probabilities of regimes 2 and 4.

Fig. 3 shows a classification result using regime 2 for 6
seconds. However, the models based on the safety obser-
vations and using 3 as number of regimes, the model suc-
cessfully classify only 2 regimes in this period: braking and
standing regimes. Another sample of successful classification
is shown in Fig. 4 which presents a classification sample for
regime 4 that is classified into acceleration and approaching
regimes. The parameters of the 4 regimes classified by this
stage are shown in Table I.

C. Calibration of car following model

Calibrating non-linear car following models such as IDM
in Eq. (1) aims at finding suitable model parameters for
each driver. This process can be assumed as a non-linear
optimization problem.



Fig. 3: Braking and standing regimes captured by safety
factors model.

Fig. 4: Acceleration and approaching regimes captured by
safety factors model.

The calibration of the parameters entailed two calibration
scenarios. The first calibration is performed for each driver
using all the data samples available. The second calibration
is performed for each driving regime, and the calibration
parameters are used according to each regime probability.
Using real driving dataset allows to compare the calibration
between the real observed data and the trajectories simulated
by the IDM model. A simulation of the following vehicle
is implemented by controlling the following behavior by
leading vehicle observation. The simulation starts by setting
the initial position and velocity of the follower initialized by
the same values as real data. Then, the IDM model is used
to simulate the follower trajectories for both the calibration
scenarios.

The main objective of the calibration process is to min-
imize the gap between the observed driving behavior and

the car following model simulated driving behavior. Any
observed values as velocity, gap distance, and velocity dif-
ference can be used for optimization. Here, velocity and
gap distance are being used. The objective function used is
the root mean squared error percentage considering both the
follower speed and space gap between leader and follower,
as demonstrated in Eq. (9):

F =

vuutP
(vf(t)obs � vf(t)sim)2P

(vf(t)obs)2
+

sP
(h(t)obs � h(t)sim)2P

(h(t)obs)2
(9)

Genetic algorithm (GA) is one of the applicable techniques
for solving the non-linear optimization problems, and a lot of
research has been done for calibrating car following models
using GA such as [24] and [25] for IDM parameters cali-
bration. GA is applied where the population fitness function
is the objective function in Eq. (9) after simulating IDM
trajectories for each IDM parameter set. According to IDM
parameters definition, each parameter can be constrained in
specific allowable range in order to reduce the parameters
search space; the driver desired velocity v0 is constrained
to [1 - 70] m/s, the desired time gap T to [0.1 - 6] s,
the minimum distance s0 to [0.1 - 6] m, and the maximum
acceleration a & comfortable deceleration b to [0.1 - 6] m/s.

The calibration results for the 3 datasets are presented
in Table III. The results include the calibration of the
data observed samples and the calibration of each regime
generated by the MRS model presented in Eq. (7). The GA
calibration parameters for different regimes may reach to the
upper or lower limit of a parameter, such as regime 1, 2,
and 3 in dataset 1 for parameter b “maximum deceleration
rate” which means the regime is not a deceleration regime
and does not contain any information about the deceleration
behavior of the driver. The calibration of the driver desired
speed v0 depicts how the driver changes his/her desired speed
according to the situation and corresponding regimes, while
the calibration can give more detailed information about the
driver objectives.

Fig. 5 presents a sample of the fitting gap distance for
dataset 2. As shown in the figure, regime switching based
calibration has the ability of introducing better fitting for
the data than the standard IDM calibration. Compared to the
observed data, the mean absolute error of the IDM calibration
is 1.78 m, and the regime-based error reduced to 1.11 m with
38.2% of fitting enhancements.

VI. CONCLUSIONS AND FUTURE WORKS

Building models able to analyze driver behaviors based
on real driving dataset is a major issue for dealing with
driver decisions. Applications of such models include ad-
vanced driver support systems, accident prediction, driver
assessment systems, and driver behavior simulation models.
In this paper, we present a multi-stage car following regime
classification model based on Markov regime switching.
This helps in capturing and classifying different driving
regimes. The results show that the model is able to infer
the switching process dynamics between regimes, determine



Dataset 1
Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 All

V0 53.54 46.213 69.545 42.368 10.95 69
S 5.1 1.59 4.07 3.22 2.5 2.16
T 1.33 1.095 1 1.61 1.66 1.096
a 0.1 1.377 0.633 1.527 0.32 1.584
b 6 6 6 0.747 0.21 6
Error 0.16 0.315 0.046 0.34 0.075 0.497

Dataset 2
Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 All

V0 60.32 49.37 51.54 6.31 52.18 70
S 1.14 1.19 2.68 3.01 2.11 3.062
T 1.18 2.16 0.46 2.64 0.74 1.238
a 0.88 1.09 0.2 0.98 0.43 1.155
b 6 3.04 0.1 6 0.1 1.436
Error 0.198 0.3 0.07 0.36 0.3 0.524

Dataset 3
Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 All

V0 20.93 15.08 33.38 36.15 26.29 16.348
S 0.1 1.7 1.44 1.25 2.26 1.37
T 1.615 0.87 2.28 2.12 0.43 1.293
a 6 0.85 1.51 1.8 1.03 1.477
b 0.28 1.33 3.384 0.1 0.32 0.565
Error 0.217 0.224 0.115 0.018 0.319 0.337

TABLE III: IDM parameters calibration.

Fig. 5: Dataset 2 calibration results.

regimes characteristics, and capture rare and short events. We
plan to examine the model on a large dataset for different
driving behaviors, e.g., lane changing. The calibration of
the driving behavior models (e.g., car following models)
is implemented based on driving situation. This makes a
significant improvement in fitting the driving data, so we
plan to use different objective functions for each regime.
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“Calibration of the gipps car-following model using trajectory data,”
Transportation Research Procedia, vol. 3, pp. 952–961, 2014.

[25] C. Chen, L. Li, J. Hu, and C. Geng, “Calibration of mitsim and idm
car-following model based on ngsim trajectory datasets,” in Vehicular
Electronics and Safety (ICVES), 2010 IEEE International Conference
on, July 2010, pp. 48–53.


